On Ulam’s type stability criteria for fractional integral equations including Hadamard type singular kernel
نویسندگان
چکیده
منابع مشابه
An effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملUlam-Hyers-Rassias stability for fuzzy fractional integral equations
In this paper, we study the fuzzy Ulam-Hyers-Rassias stability for two kinds of fuzzy fractional integral equations by employing the fixed point technique.
متن کاملGeneralized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملPositive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations
In this paper, we study the existence of positive solutions for a class of coupled integral boundary value problems of nonlinear semipositone Hadamard fractional differential equations Du(t) + λf(t, u(t), v(t)) = 0, Dv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0, u(1) = v(1) = 0, 0 ≤ j ≤ n− 2, u(e) = μ ∫ e 1 v(s) ds s , v(e) = ν ∫ e
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2020
ISSN: 1303-6149
DOI: 10.3906/mat-1910-70